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In certain run-to-run (R2R) processes, timely accurate measurements are difficult to obtain due to slow laboratory
measurement operations. Instead, only low-resolution categorical observations are observed online for important quality
variables; continuous measurements for the same variables are provided after a specific amount of delay. Currently, most
conventional R2R controllers cannot be applied if no continuous observations are available. It is therefore important to
develop online algorithms for R2R process control based on mixed-resolution information that is partially timely and
partially delayed. In this study, we take the lapping process in semiconductor manufacturing as an example and propose
parameter estimation models with these mixed-resolution data for processes with the first-order autoregressive, AR(1),
disturbance series. We also derive control strategies to generate recipes between production runs for better process con-
trol. The computational results of a performance evaluation show that the control performance of the proposed method is
competitive compared to existing methods that are based on accurate measurements.
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1. Introduction

Low-resolution categorical observations are frequently observed in manufacturing processes. An important reason is
that in some processes, practical constraints, such as cost and instruments, make it impossible to collect timely quanti-
tative measurements. Alternatively, qualitative observations are collected for quality assurance. Wang and Tsung
(2007) studied a deep reactive ion etching (DRIE) process. In this process, products could be measured only by scan-
ning electron microscopy (SEM), which results in a bottleneck in large-volume manufacturing. Instead, visual inspec-
tion, which produces quality-related readings of wafer trenches on a positive/normal/negative scale, can be used for
quality control. Spanos and Chen (1997) studied a plasma etching process, in which the samples are classified as ‘very
rough’, ‘rough’, ‘smooth’, ‘very smooth’, etc., based on the roughness of the etched sidewalls. Lu, Jeng, and Wang
(2009) also emphasised that the analysis of a new data type, including categorical data, is an important research topic
in nanotechnology.

Sometimes, although only categorical data is collected online, high-resolution continuous measurements can be
obtained after a certain delay. In the DRIE process above, for example, precise values of the angle of the wafer trenches
can also be measured by an SEM offline after a sufficient delay time. As another example, in a footwear manufacturing
process, gluing is one important step that glues two piece of leather together. Factors such as heating time and pressure
may affect the binding force. To adjust this process, the practitioners usually take samples from the process, and try to
rip two pieces apart manually and classify the samples as weakly, strongly, or very strongly bound. Instead, the samples
could be sent to the laboratory to measure the binding force using a tension gauge, which can give an accurate reading.
In this case, the timely categorical and delayed accurate information could be used together. Thus, observations with
two types of resolution (i.e. categorical data versus continuous data) would be attained in this case; these observations
are called multi-resolution observations in this paper. Therefore, when multi-resolution data is available in a process,
controlling the process status and the product quality based on this new type of information becomes necessary and
important.

In this study, the lapping process in semiconductor manufacturing is taken as an example. A general wafer prepara-
tion process consists of slicing, lapping, chemical vapour deposition (CVD), and polishing. A lapping run can be
described as the following steps: (a) wafer loading; (b) machine setup; (c) lapping; (d) wafer unloading; and (e) testing.
Lapping is critical to forming quality characteristics for downstream processing, because it is the first step of the
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mechanical treatment on the wafer surface after slicing. Thickness of lapped wafers is an important geometric quality
parameter in the lapping step, which is largely dominated by lapping time and incoming thickness. To control the
amount of removal and to achieve an ideal thickness, lapping time is usually adjusted between runs. More about this
process is also introduced in Li, Wang, and Yeh (2013) and Lin and Wang (2012)

In a case in which wafer thickness before and after lapping are both known online, classical run-to-run controllers,
such as an exponentially weighted moving average (EWMA) controller and its extensions (Ingolfsson and Sachs 1993;
Tseng, Tsung, and Liu 2007), a double EWMA controller (Chen and Guo 2001) and other controllers (Fan et al. 2002;
Fan 2005; He, Wang, and Jiang 2009; Jin and Tsung 2009; Jen, Jiang, and Wang 2011), can be applied to generate
recipes and to guide setting adjustments between runs. However, in the lapping process, accurate thickness values must
be measured in a special inspection room with the aid of an expensive testing machine, which is both costly and time-
consuming. In industrial practice, a batch of wafers is moved together to the inspection room for intermediate testing until
the whole batch finishes lapping. Since long breaks are not allowed between production runs, it is impossible to obtain
accurate data immediately after each lapping run. Alternatively, a less expensive but less accurate machine is equipped to
help classify lapped wafers into different categories, namely, very thin, thin, normal, and thick to very thick, immediately
after the lapping operation. After some time, during intermediate testing, precise thickness values will be collected for
these lapped wafers. Thus, mixed-resolution data can be obtained in this lapping process for quality control purposes.

To maintain a better thickness quality, a controller is necessary to help generate the optimal lapping time for each
run. However, only categorical observations are available directly after each run, and a traditional EWMA controller is
not applicable because it requires numerical data. Meanwhile, if delayed quantitative measurements are used for process
adjustments, then the performance and robustness of an EWMA controller is not good (Good and Qin 2002, 2006;
Chamness et al. 2001). Therefore, a new type of controller that can generate control actions based on timely categorical
observations and delayed continuous observations is needed in such a process.

To develop a controller that works with mixed-resolution observations, there are two major critical challenges to
address. First, a process model should be built and estimated using mixed-resolution data, and second, optimal control
actions must be generated based on mixed-resolution data.

Different model-building methods using only categorical observations can be found in the existing literature. A
cumulative logistic model is one of the most popular categorical data models. Spanos and Chen (1997) utilised this
model in the study of an etching process and estimated unknown parameters through the maximum likelihood (ML)
method. The nonlinear optimisation problem related to ML functions has been discussed in detail by Agresti (1990).
McCullagh (1980) replaced the logit link function in the cumulative logistic model with other link functions, such as
the probit, and thus successfully extended this model to a generalised linear model (GLM). Liu and Agresti (2005)
investigated the choice between the logit and probit functions. Bayesian-based methods for parameter estimation can
also be found in the literature. Chipman and Hamada (1996) proposed a Bayesian approach to estimating the parameters
in the GLM using Gibbs sampling with the assumption that the categorical observations are uncorrelated. Girard and
Parent (2001) extended this Bayesian GLM to cases with autocorrelated observations. Lawrence et al. (2008) studied
parameter estimation issues with multivariate categorical outputs. All of the aforementioned estimation strategies assume
that historical observations are already collected before model fitting, and they estimate parameters in an offline manner
given all of the information. However, in a lapping process or in other R2R processes, products are produced batch by
batch; data arrive gradually in a stream. Therefore, it is meaningful to develop an online parameter estimation method
that incorporates categorical observations. An adjustment ML method and a Bayesian online estimation method were
recently proposed by Lin and Wang (2011) to address this problem. Lin and Wang (2012) used a Bayesian framework
to tackle the same problem. These investigators also studied the lapping process in wafer production and applied an
adjustment strategy to this process, using parameters that were estimated with their online method.

Recently, research on process control using low-resolution information has received considerable attention. Spanos
and Chen (1997) first demonstrated the feasibility of implementing process monitoring and control with qualitative char-
acteristics. Wang and Tsung (2007) introduced a feedback controller in a semiconductor manufacturing process. Shang,
Wang, and Tsung (2009) improved this controller by considering misclassification errors in which misclassification pos-
sibilities were used to compensate for process adjustment bias. Wang and Tsung (2010) studied recursive parameter esti-
mation with categorical observations that were available and proposed a Bayesian Categorical Controller. The authors
assumed that all of the cut-points were known and only studied the estimation of a linear process model. Lin and Wang
(2011) constructed a new approach to estimating both the intercept and the cutoff parameters online and to adjusting the
process each run. Nonetheless, all of the controllers above absorb only categorical data without considering how to
combine the delayed accurate information to achieve more efficient process control and quality improvement. Therefore,
a new algorithm that can estimate model parameters online and generate recipes for run-to-run control using mixed-
resolution observations must be developed.
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We mentioned above that the EWMA controller fails to work well with delayed accurate data. In fact, the perfor-
mance and stability properties of EWMA controllers with such measurement delays have been discussed by several
researchers. Good and Qin (2006) studied the stability region for both the single-input single-output (SISO) and
multiple-input multiple-output (MIMO) EWMA controllers while handling different metrology delays. The robustness
of double EWMA controllers was extensively investigated in Good and Qin (2002). A comparison between several run-
to-run algorithms, including the EWMA with a measurement delay, has been conducted by Chamness et al. (2001). All
of these investigations show that both the stability properties and the performance of EWMA controllers are worse when
there is a delay in the measurement. Thus, researchers began to investigate and improve EWMA-type run-to-run control-
lers under a metrology delay. Jin and Tsung (2009) developed the Smith–EWMA run-to-run controller, introducing
the Smith predictor, which was created specifically for time delay systems in control theory for EWMA controllers. A
performance comparison with the EWMA and recursive-least-square controllers under the first-order autoregressive
(AR(1)) and integrated moving average (IMA(1)) (1) disturbance conditions based on simulation is conducted; this
comparison shows that the Smith–EWMA controller has better stability properties and also has a more satisfactory per-
formance for process control. However, these algorithms still rely on continuous measurement for process adjustment.

In this research, a strategy for online parameter estimation and process adjustment based on mixed-resolution obser-
vations is proposed. The remainder of this paper is organised as follows. Section 2 illustrates the formulation of the
model to be studied. Section 3 presents the method for online parameter estimation and process control using multi-reso-
lution data. Section 4 studies and analyses the performance of the proposed method. Finally, Section 5 concludes this
paper and discusses topics that are related to mixed-resolution data, which deserves further research.

2. Process modelling

In this section, we still use the lapping process for illustration. In many R2R processes, linear models can be used to
characterise processes with continuous inputs and outputs (see, e.g., Del Castillo and Hurwitz 1997; Wang and Tsung
2007, 2008; Shang, Wang, and Tsung 2009; Wang and Tsung 2010). Othman et al. (2006) showed that a linear
model between the removal rate and the controller factors is adequate for the lapping process. In this research, we
also studied the lapping process via experimental design and found that it is adequate to represent the lapping process
by the following equation:

yt ¼ aþ but�1 þ cxt þ dt; (1)

where yt is the output thickness that is obtained at time t; ut�1 is the lapping time set at time t � 1, which is a controlla-
ble factor in lapping; xt is the incoming wafer thickness generated by the slicing stage, which can be observed but not
changed; dt represents the process disturbance; and a, b and c are the linear coefficients. Here, we assume that dt obeys
a first-order autoregressive model, i.e. an AR(1) model. Thus, dt can be written as follows:

dt ¼ qdt�1 þ et; (2)

where et � N (0; r2) and q is the autogressive coefficient. AR(1) is a general model that can be used to represent an
autocorrelated series, and autocorrelation is also seen in the literature and many real applications. For example, Fan
et al. (2002) developed a triple-EWMA controller for a process having an AR(1) disturbance series; Vanli et al. (2007)
also employed an autoregressive disturbance series when doing model selection for run-to-run control; and the real
lithography process in semiconductor manufacturing the authors studied has an autoregressive disturbance model. Our
engineering experience also suggests that the AR(1) disturbance series is adequate for some real processes. Therefore,
the AR(1) disturbance model is used in this work. If a different disturbance model is used, some of the following
derivations presented in this work should be changed accordingly, but the general framework of incorporating mixed-
resolution information for R2R control can still be applied. Without loss of generality, in this equation, d0 is assumed to
be equal to zero; therefore, we have d1 ¼ e1 � N (0; r2).

The variable yt in Equation (1) above should be measured on a continuous scale. We assume its metrology to be
delayed for d steps, therefore yt would remain unknown until step t þ d. Therefore, yt is treated as a latent variable at
step t, and another categorical variable, Yt, is assumed to be observable and linked with yt by the following mapping
function (Chipman and Hamada 1996; Girard and Parent 2001; Wang and Tsung 2007):

Yt ¼ j , cj�1\yt � cj; j ¼ 1; . . . ; c;
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where c ¼ ½c0; c1; . . . ; cc�1; cc�T is a vector of cut-points against which samples are classified. For the case when yt is an
unbounded variable (i.e. no boundaries for the worst and best values of yt), we assume that c0 ¼ �1 and cc ¼ 1.
Meanwhile, at step t, the wafer sample of step t � d would be measured precisely; in other words, yt�d can be obtained
at that point. Thus, the mixed-resolution dataset observed at step t consists of an online categorical observation Yt and
an offline continuous observation yt�d . That is, Yt and yt�d always become available at every time t for t ¼ 1; 2; 3; . . ..

In Equation (1), we assume that b and c are known and that a is unknown. This assumption results from the fact
that a easily fluctuates with the temperature of the lapping pans and the machine setup when a new order arrives, while
b and c are dominated by a physical mechanism and therefore are relatively stable. The wafer thickness before lapping,
xt, is to be measured accurately after slicing; thus, it is available in the lapping stage. The autogressive coefficient q in
Equation (2) is also assumed to be unknown. The cut-points c are neither known nor able to be measured directly.
Therefore, c must be estimated.

3. Online estimation and adjustment using categorical observations

At the end of each production run, the following tasks are performed sequentially: (a) measurement of samples to obtain
categorical data and fetching of the delayed accurate data from the intermediate test in the inspection room; (b) updating
of estimates of unknown parameters using categorical and accurate observations that are available at this run; and (c)
recommendation of parameter settings for the next run. Task (a) is performed manually by operators. In the following
sections, the treatment of tasks (b) and (c) is introduced.

3.1 Online parameter estimation

In this section, a recursive method to estimate the unknown parameters a, c and q online is presented. This method is
developed in a Bayesian framework, utilising Gibbs sampling to simulate the posterior distribution of the unknown
parameters. For each run, whenever a new mixed-resolution observation dataset becomes available, the categorical and
continuous observations in this dataset will be used to calculate the updated estimates of the parameters.

3.1.1 Fully conditional distribution in Gibbs sampling

In Bayesian theory, prior knowledge is assumed to be possessed. This knowledge serves as the prior distributions of
unknown parameters with respect to estimations. It is reasonable to assume that a � N a0; r2a

� �
and c � N c0;Rc;0

� �
,

where c0 ¼ (c1;0; . . . ; cc�1;0)
T , and that

P
c;0 ¼ r2c;0 � I . Meanwhile, c is restricted such that cmin\c1\c2\. . .\

cc�1\cmax. Here, cmin and cmax are constants. Because q always falls into the interval (�1; 1), we assume that it obeys

a truncated normal distribution, which is q � N q0; r
2
q

� �
� I jqj\1ð Þ. We also assume that a, c and q are independent of

one another.
Based on the prior distributions and the new observations, the corresponding posterior distributions can be calculated

with Bayes’ rules directly or with simulation approaches. In this work, a classical MCMC method, Gibbs sampling, will
be applied. For Gibbs sampling, it is critical to obtain the fully conditional distributions of the unknown parameters.

The conditional distributions to derive are as follows:

f yt a; c; q; Yt; . . . ; Y1; yt�d; . . . ; y1jð Þ;

f a yt; c; q; Yt; . . . ; Y1; yt�d; . . . ; y1jð Þ;

f cj a; ci–j; q; yt;Yt; . . . ; Y1; yt�d; . . . ; y1
��� �

;

and f (q yt; a; c; Yt; . . . ; Y1; yt�d; . . . ; y1j ):
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For convenience, we omit the latter condition items and denote those above as f ( �j ) hereafter.
After Yt is observed, we begin by investigating the fully conditional distribution of yt. It is a special case when

t ¼ 1 because d1 ¼ e1 � N (0; r2); thus, we calculate it first. It can be given as follows:

f y1 �jð Þ / N aþ bu0 þ cx1; r
2

� � � I cY1�1\y1\cY1
� �

: (3)

When t � 2, due to the autoregressive properties between the sample series, we have dt ¼ q(ŷt�1 � a� but�2 � cxt�1)
þet, where ŷt�1 is the estimate of yt�1 that is attained in the run t � 1. Hence,

yt ¼ aþ but�1 þ cxt þ q(ŷt�1 � a� but�2 � cxt�1)þ et

¼ qŷt�1 þ (1� q)aþ b(ut�1 � qut�2)þ c(xt � qxt�1)þ et

Therefore, the conditional distribution of yt becomes related to the observations in the foregoing steps and can be
written as follows:

f yt �jð Þ / N qŷt�1 þ (1� q)aþ b(ut�1 � qut�2)þ c(xt � qxt�1); r
2

� � � I cYt�1\yt\cYt
� �

; (4)

Based on Bayes’ theorem, the fully conditional distribution of a can be written as follows:

f (a �j ) / N la;t�1; r
2
a;t�1

� �
� N yt � qŷt�1 � b(ut�1 � qut�2)� c(xt � qxt�1)

(1� q)
;

r2

1� q

� �

� N yt�d � qyt�1�d � b(ut�1�d � qut�2�d)� c(xt�d � qxt�1�d)

(1� q)
;

r2

1� q

� �
; ð5Þ

which is still a normal distribution. Equation (5) could be simplified to be f (a �j ) / N la;t; r
2
a;t

� �
, which satisfies the fol-

lowing two recursive equations:

la;t ¼
la;t�1

r2
a;t�1

þ yt � qŷt�1 � b(ut�1 � qut�2)� c(xt � qxt�1)

r2=(1� q)

 

þ yt�d � qyt�1�d � b(ut�1�d � qut�2�d)� c(xt�d � qxt�1�d)

r2=(1� q)

�
= 1

r2
a;t�1

þ 2(1� q)2

r2

 !
; ð6Þ

and

r2
a;t ¼ 1= 1

r2
a;t�1

þ 2(1� q)2

r2

 !
; (7)

where la;0 ¼ a0, and r2a;0 ¼ r2a.
Similarly, the fully conditional distribution of cj can be obtained as follows:

f (cj �j )/

N (lcj ;t�1; r
2
cj ;t�1) � I max

i�t�d
fyi Yi ¼ jj g\cj\min

i�t�d
fyt; yi Yi ¼ jþ 1j g

� �
; j ¼ Yt � 1

N (lcj ;t�1; r
2
cj ;t�1) � I max

i�t�d
fyt; yi Yi ¼ jj g\cj\min

i�t�d
fyi Yi ¼ jþ 1j g

� �
; j ¼ Yt

N (lcj ;t�1; r
2
cj ;t�1) � I max

i�t�d
fyi Yi ¼ jj g\cj\min

i�t�d
fyi Yi ¼ jþ 1j g

� �
; o:w:

8>>>>>><
>>>>>>:

(8)
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Lastly, we will derive the conditional distribution for the autoregressive coefficient q, which can be written as
follows:

f q �jð Þ / N lq;t�1; r
2
q;t�1

� �
� N yt � a� but�1 � cxt

ŷt�1 � a� but�2 � cxt�1
;

r
ŷt�1 � a� but�2 � cxt�1

� �2
 !

� N yt�d � a� but�1�d � cxt�d

yt�1�d � a� but�2�d � cxt�1�d
;

r
yt�1�d � a� but�2�d � cxt�1�d

� �2
 !

� I jqj\1ð Þ:

It is not difficult to verify that the above equation is a truncated normal distribution and therefore can be rewritten
as f (q �j ) / N lq;t; r

2
q;t

� �
� I(jqj\1), which leads to the following:

lq;t ¼
lq;t�1

r2
q;t�1

þ (yt � a� but�1 � cxt) � (ŷt�1 � a� but�2 � cxt�1)

r2

 

þ (yt�d � a� but�1�d � cxt�d) � (yt�1�d � a� but�2�d � cxt�1�d)

r2

�

= 1

r2
q;t�1

þ (ŷt�1 � a� but�2 � cxt�1)
2

r2
þ (yt�1�d � a� but�2�d � cxt�1�d)

2

r2

 !
; ð9Þ

r2
q;t ¼ 1= 1

r2
q;t�1

þ (ŷt�1 � a� but�2 � cxt�1)
2

r2
þ (yt�1�d � a� but�2�d � cxt�1�d)

2

r2

 !
; (10)

where lq;0 ¼ q0, r
2
q;0 ¼ r2q.

Now we have finished calculating the fully conditional distributions of all of the unknown parameters. These calcu-
lations serve as preparation for Gibbs sampling.

3.1.2 Online parameter estimation procedure

In the following, a Bayesian online procedure for estimating the unknown parameters and for generating control actions
via Gibbs sampling is proposed.

When a new mixed-resolution observation dataset fYt; yt�dg is collected, the Gibbs sampling procedure begins to
sample yt, a, c1; . . . ; cc�1 and q repeatedly a sufficiently large number of times. The updated parameter values in the
posterior distributions can be obtained by calculating the sample mean and variance of a, c1; . . . ; cc�1 and q with the
initial samples removed. The sampling process for each run of the online estimation is outlined as follows:

Step 1: Sample one yt from Equation (3) or (4);
Step 2: Using the posterior distribution of a, N (la;t�1; r

2
a;t�1) estimated in the previous run as the prior and yt sampled

from Step 1, calculate the conditional distribution of a for run t using Equations (6) and (7);
Step 3: Sample one a from its conditional distribution obtained from Step 2;
Step 4: Using the posterior distribution of cj, which is

N lcj;t�1; r
2
cj ;t�1

� �
� I max

i�t�d
fyi Yi ¼ jj g\cj\min

i�t�d
fyi Yi ¼ jþ 1j g

� �

estimated in the previous run as the prior, yt sampled from Step 1 and a from Step 3, calculate the conditional
distribution of cj for run t in Equation (8);

Step 5: Sample c1; . . . ; cc�1 in order from their respective conditional distributions, one element at a time.
Step 6: Using the posterior distribution of q, N lq;t�1; r

2
q;t�1

� �
� I(jqj\1), which was estimated in the previous run as

the prior, yt sampled from Step 1, a from Step 3 and c from Step 5, calculate the conditional distribution of q
for run t using Equations (9) and (10);
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Step 7: Sample one q from its conditional distribution obtained from Step 6;
Step 8: Using the newly sampled a, c and q, update the conditional distribution of yt, and return to Step 1;
Step 9: Repeat Steps 1–8 a sufficiently large number of times;

Step 10: Calculate the sample mean and variance of a, cj and q, which will serve as the updated parameter values

in the posterior distribution N la;t; r
2
a;t

� �
, N lcj;t; r

2
cj;t

� �
� I maxi�t�dfyi Yi ¼ jj g\cj\mini�t�dfyi Yi ¼ jþ 1j g� �

and N lq;t; r
2
q;t

� �
� I jqj\1ð Þ. Next, continue to produce the next run and perform an inspection to collect new

observations. Next, repeat Steps 1–10.

3.2 Run-to-run process adjustment

To control the process, maintaining it on target, and to compensate for any initial bias, a recipe for each run is generated
under a specific criterion to minimise the process variability. Denote the target of the process (1) as T . We define the
following quadratic loss function conditioning on all of the historical information as the objective of the process adjust-
ment at Step t:

L ¼ E (ytþ1 � T )2 Ftj	 

;

where Ft ¼ fYt; . . . ; Y1; yt�d; . . . ; y1; ut�1; . . . ; u0; xt; . . . ; x1g.
Equation (1) shows that ytþ1 ¼ aþ but þ cxtþ1 þ dtþ1, and Equation (2) shows that dtþ1 ¼ qdt þ etþ1; thus, it

follows that

L ¼ E (qyt þ (1� q)aþ b(ut � qut�1)þ c(xtþ1 � qxt)þ etþ1 � T )2 Ftj	 

:

Considering E(e2tþ1) ¼ r2, we have the following:

L ¼ (qyt þ (1� q)a� bqut�1 þ c(xtþ1 � qxt)� T )2 þ b2u2t

þ2(qyt þ (1� q)a� bqut�1 þ c(xtþ1 � qxt)� T )but þ r2:

Taking the partial derivative of the above equation with respect to ut as zero and replacing the unknown parameter
with its estimate leads to the optimal control action

ut ¼ T � q(t)ŷt � (1� q(t))a(t) þ bq(t)ut�1 � c(xtþ1 � qxt)
b

; (11)

where q(t) is the estimate of q at Step t, a(t) is the estimate of a at Step t, and ŷt is the estimate of yt at Step t.
It should be noted that when the parameter estimations are already quite accurate, there could be no need to update

the model parameters. In these cases, only a process adjustment is needed. At this time, because the parameters are no
longer updated, the estimation ŷt would not be obtained, either. Hence, the optimal recipe for the next run could not be
generated by Equation (11). Instead, it would be calculated with the following formula:

ut ¼ T � q̂E(yt Ftj )� (1� q̂)âþ bq̂ut�1 � c(xtþ1 � qxt)
b

; (12)

where q̂; â are the final estimations, respectively, for q and a, before the updating ceases. Taking the treatment in Wang
and Tsung (2007) in this equation, E(yt Ftj ) can be written as follows:

E(yt Ftj ) ¼ 1

2
(ĉYt�1 þ ĉYt ); (13)

where ĉj; j ¼ 1; . . . ; c is the final estimate for the cutoff parameter cj. Replace E(yt Ftj ) in Equation (12) with Equation (13),
and we obtain the following:
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ut ¼
T � q̂

2(ĉYt�1 þ ĉYt )� (1� q̂)âþ bq̂ut�1 � c(xtþ1 � qxt)

b
: (14)

Therefore, to adjust the process run-to-run, we should apply Equation (11) to generate the control action during the
estimation of the model parameters, utilising Equation (14) instead when the whole estimation procedure ends.

4. Performance studies

In this section, we investigate the performance of the proposed method and compare it with existing methods for either
estimation or process control. For all of the cases that are to be studied below, the true model is set to be the same as
the model in Lin and Wang (2011). In other words, the target process follows Equation (1) with a ¼ 60, b ¼ 2, c ¼ 0:1,
and the disturbances follow Equation (2) with q ¼ 0:6 and r ¼ 3. The process target T equals 400, and four cut-points,

(a) (b)

(d)(c)

(e) (f)

Figure 1. Trajectories of the estimated parameters with two-step delays. (a) The mean of a; (b) The standard deviation (SD) of a; (c)
The mean vector of c; (d) The SD of c; (e) The mean vector of q; (f) The SD of q.
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396, 398, 401 and 405, are used to classify the output yt into five mutually exclusive categories, which are
c ¼ ½396; 398; 401; 405�.

4.1 Parameter estimation and process adjustment performance

In this calculation, we assume that the prior mean of a, c and q are 50, ½394; 396; 403; 407�T and 0, respectively, and
their standard deviations are all 6, to investigate the issues that are caused by an initial bias. Additionally, the cut-points
c are restricted such that 392\c1\c2\c3\c4\409. The Gibbs sampling is set to be repeated 10,000 times whenever
a new observation is generated, and the last 5000 samples are used to calculate the marginal distribution of each
unknown parameter. We simulate 200 categorical observations for each process.

Figures 1–3 show the trajectories of the means and standard deviations of the estimated a, c and q with various
delays (two steps, five steps and 10 steps). We can see from Figures 1–3 (a), (c) and (e) that the estimated parameters
approach their true values gradually as categorical observations are collected run by run. An oscillation could exist in
the early stage, because at the beginning, the samples are few and the information contained is comparatively rough.

(a) (b)

(d)

(f)(e)

(c)

Figure 2. Trajectories of estimated parameters with five-step delays. (a) The mean of a; (b) The SD of a; (c) The mean vector of c;
(d) The SD of c; (e) The mean vector of q; (f) The SD of q.
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Nevertheless, after approximately 40 steps, the estimates already become notably close to their true values. From
Figures 1–3 (b), (d) and (f), it is clearly seen that the standard deviations of the estimated parameters decrease gradually
until reaching certain small values, which show that the online algorithm could provide more and more accurate
estimates with a small variance using a continuous mixed-resolution data stream.

The sequences of controlled and uncontrolled outputs yt with different delay times are shown in Figure 4.
Figure 4 (a), (b) and (c) suggest that, for all of the delay cases, the uncontrolled outputs have deviated from the
target of 400 to a large extent, whereas the controlled output is maintained almost on target. Therefore, we can
conclude that the proposed Bayesian method is quite effective in process output control using mixed-resolution
observations.

4.2 Performance comparison

Next, we will compare the performance of our proposed approach with that of other methods for handling online
parameter estimation or process adjustment.

(a)

(c)

(e) (f)

(d)

(b)

Figure 3. Trajectories of estimated parameters with 10-step delays. (a) The mean of a; (b) The SD of a; (c) The mean vector of c;
(d) The SD of c; (e) The mean vector of q; (f) The SD of q.
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With respect to parameter estimation performance, our online estimation method will be compared with the Bayesian
estimation method, which applies the Bayes’ theorem directly to calculate the posterior distributions of the parameters
that are based on online quantitative data and on the same method based on delayed quantitative data.

For the continuous data in the studied mixed-resolution and the delayed continuous scenarios, both are assumed to
have 10-step delay. The simulation is repeated 100 times, and the average MSE of all of the parameter estimates is cal-
culated at each step to show their estimation accuracy. Because the delayed precise observations would not be available
before the tenth step, and the estimates are quite accurate after the one-hundredth step, only the MSE for between the
tenth and the one-hundredth steps will be calculated in this study. We will study different initial value cases, and for
each case, the prior distributions of the unknown parameters in all of the three approaches will be set to be equal to the

(a)

(b)

(c)

Figure 4. Trajectories of process outputs with a controller versus without a controller. (a) Two-step delay; (b) Five-step delay; (c)
Ten-step delay.
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same initial values. The scenario of having online precision data is studied solely for the purpose of performance
investigation. The results are shown in Figure 5.

It is clearly seen from Figure 5 that under both of the two settings of initial values, our proposed method outper-
forms the Bayesian method using timely numerical data and outperforms the same method using delayed numerical data
with smaller average MSE values. Meanwhile, the method using timely data performs better than the method using
delayed data, which can be easily explained because delayed information naturally leads to comparatively less
efficiency.

The EWMA controller is widely applied in industrial engineering, which utilises continuous data to generate recipes
run by run. To address a measurement delay, Jin and Tsung (2009) developed a specific Smith–EWMA control algo-
rithm. To investigate the performance of the method that was proposed in this paper, the EWMA controller and the
Smith–EWMA controller are also set up to control the same process. These two controllers are both operated with the
parameter k, which could influence the control performance. Therefore, we study here the cases that have three different
k values, which are 0.2, 0.4 and 0.6. Two hundred lapping runs are simulated in one simulation, and the simulation is
repeated 100 times. The initial values of the parameter estimates are all assumed to be a(0) ¼ 50; c(0) ¼ ½394; 396;
403; 407�; q(0) ¼ 0. The MSE of the output is calculated at each step to show the control accuracy, which is shown in
Figure 6.

Figure 6 shows the MSE at 200 steps. We can see that in the first 40 steps, the EWMA controller and the
Smith–EWMA controller perform better than the proposed method, with smaller MSE values and variances being
observed. However, after approximately step 40, our R2R adjustment method begins to reach the EWMA controller
with MSE values of the same level and outperforms the Smith–EWMA controller with a much smaller MSE. It is also
found that the standard deviation of the MSE for our method is maintained at approximately three after step 40, which
equals r of the white noise item et in the disturbance dt. Therefore, we can conclude that our control method could
effectively compensate for the deviations and fluctuations that were induced by the initial bias and the autocorrelation
between the outputs.

(a) (b)

Figure 5. Parameter estimation performance comparison with different initial values. (a) a(0) ¼ 50; c(0) ¼ ½394; 396; 403; 407�; q(0) ¼ 0;
(b) a(0) ¼ 45; c(0) ¼ ½393; 395; 404; 408�; q(0) ¼ �0:2.

(a) (b)

Figure 6. Parameter estimation performance comparison with different initial values.
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The above study demonstrates the efficiency of the proposed method in calibrating an initial bias in the unknown
parameters and in providing accurate estimates online based on mixed-resolution observation time series. This study also
proves that the proposed algorithm is effective for controlling the process using mixed-resolution data.

5. Conclusions

It is a common practice in some manufacturing processes that timely categorical observations and delayed continuous
information are available for R2R process adjustment. This paper investigated the online estimation and control of a
run-to-run process with AR(1) disturbances when mixed-resolution observations are available. A Bayesian method,
which utilises Gibbs sampling to estimate the posterior distributions, was proposed to update the model parameters
when mixed-resolution data were collected sequentially from the process. A control algorithm that functioned based on
the mixed-resolution observations was also proposed to adjust the process output to be on target.

Simulation studies showed that when an initial bias existed, the proposed method could move parameter estimates
toward their respective true values quickly. The proposed scheme, together with the control algorithm, was proved to be
effective in controlling processes that had an initial bias.

This paper used a simple model with AR(1) noises to characterise a lapping process. When the disturbance series
became more complicated, for example, following a general autoregressive integrated moving average (ARIMA) time
series, the statistical process adjustment algorithm had to be modified accordingly. In addition, in this study, we assume
that the cut-points are fixed. For future work, we may investigate the estimation of the cut-points as a random variable,
i.e. when misclassification exists and human factors are involved. Finally, this paper discussed this approach based on
only simulation results. Therefore its performance in controlling real processes deserves more in-depth study and could
be the focus of future research.
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